
 

 

 
Abstract— The paper deals with adaptive control of a shell and 

tube heat exchanger. Two different control inputs are considered. 
The procedure of the control design is based on approximation of a 
nonlinear model of the process by continuous-time external linear 
models with parameters recursively estimated via corresponding 
external delta models. The structures of approximating linear models 
are chosen on the basis of primary steady-state and dynamic analysis 
of the process. The control system configuration with two feedback 
controllers is used. The control laws for both control inputs are 
derived using the polynomial approach and the LQ control technique. 
The proposed method is verified by control simulations. 
 

Keywords— Delta model, external linear model, heat exchanger, 
LQ control, polynomial approach.  

I. INTRODUCTION 
EAT exchangers are equipments widely used in space 
heating, refrigeration, air conditioning, power plants, 

chemical plants, polymer manufacturing, petrochemical 
plants, petroleum refineries, natural gas processing, and some 
others. There various types of heat exchangers exist. Among 
them, shell and tube heat exchangers (STHEs) are most 
common types of heat exchangers. 

From the system engineering point of view, shell and tube 
exchangers belong to a class of nonlinear distributed 
parameter systems. Their mathematical models are described 
by nonlinear partial differential equations (PDEs). Procedures 
of modelling of distributed parameter systems are described 
e.g. in [1] – [4]. Nonlinearities in STHEs models are caused 
by products among their state and input variables. 

It is well known that these systems often are  hardly 
controllable by conventional control methods, and, its 
effective control requires application some of advanced 
methods as in [5]. 
Obviously, the design of the control must be based on a 
preliminary static and dynamic analysis of the controlled 
process by simulation methods. Some methods of numerical 
mathematics used to build simulation models can be found 
e.g. in [6] – [8]. 
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One possible approach to achieve efficient control 

algorithm is using adaptive strategies based on an appropriate 
choice of a continuous-time external linear model (CT ELM) 
with recursively estimated parameters. These parameters are 
consequently used for parallel updating of controller‘s 
parameters.  

For the CT ELM parameters estimation, either the direct 
method, see e.g. [9] and [10] or application of an external 
delta  
model with the same structure as the CT model can be used. 
The basics of delta models have been described e.g. in [11] -
[13]. Although delta models belong into discrete models, they 
do not have such disadvantageous properties connected with 
shortening of a sampling period as discrete z-models. In 
addition, parameters of delta models can directly be estimated 
from sampled signals. It can be easily proved that these 
parameters converge to parameters of CT models for a 
sufficiently small sampling period (compared to the dynamics 
of the controlled process).   Complete   description   and  
experimental verification can be found in [13]. 

The paper deals with continuous-time adaptive control of 
the  STHE. Two different control inputs and one controlled 
output are considered. The parameters of corresponding CT 
ELMs are obtained via corresponding delta models parameter 
estimation. The control system structure with two feedback 
controllers is used, see, e.g. [14] and [15]. The resulting 
controllers are derived using polynomial method, eg. [16] and 
[17], and the LQ control technique, as in [18] and [19]. The 
approach is tested on a nonlinear model of the STHE.  

II. MODEL OF THE STHE 
Consider an ideal plug-flow shell and tube heat exchanger 

in the fluid phase and with the counterflow cooling. The fluid 
flowing in tubes is cooled by the fluid flowing in the shell as 
shown in Fig. 1. 
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Fig. 1 Shell and tube heat exchanger. 

Adaptive LQ Control of a Shell and Tube  
Heat Exchanger 
P. Dostal, J. Vojtesek, and V. Bobal 

H

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 7, 2013 389



 

 

Heat losses and heat conduction along the metal walls of 
tubes are assumed to be negligible, but dynamics of the metal 
walls of tubes are significant. All densities, heat capacities, 
and heat transfer coefficients are assumed to be constant. 
Under above assumptions, the STHE model can be described 
by three partial differential equations (PDEs) in the form 
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where t stands for the time, z for the axial space variable, T for 
temperatures, v for fluid flow velocities, d1 for inner diameter 
of the tube, d2 for outer diameter of the tube, d3 for diameter 
of the shell, ρ for densities, cp for specific heat capacities, α 
for heat transfer coefficients, n1 is the number of tubes and L 
is the length of tubes. Subscripts denoted r describe the 
refrigerated fluid, w the metal walls of tubes, c the cooling 
fluid, and the superscript s steady-state values. The parameter 
values with their correspondent units are given in Table 1. 
 

TABLE I 
PARAMETER VALUES 

L = 8 m n1 = 1100 
d1 = 0.022 m d2 = 0.024 m 

d3 = 1 m 

ρr = 985 kg/m3 cpr = 4.05 kJ/kg K 

ρw = 7800 kg/m3 cpw = 0.71 kJ/kg K 

ρc = 998 kg/m3 cpc = 4.18 kJ/kg K 

α1 = 5.8 kJ/m2s K α2 = 3.6 kJ/m2s K 

 
From the system engineering point of view, out( , )r rT L t T=  

and out(0, )c cT t T=  are the output variables, and, ( )rq t , ( )cq t , 

0 ( )rT t and ( )c LT t  are the input variables. Among them, for 

the control purposes, mostly ( )cq t  and ( )rq t  can be taken 
into account  as the control variables, whereas other inputs can 
enter into the process as disturbances. In this paper, the output 
temperature of the refrigerated fluid ( , ) ( )r r outT L t T t=  is 

considered as the controlled output. 

III. COMPUTATION MODELS 
For computation of  both steady-state and dynamic 

characteristics, the finite diferences method is employed. The 
procedure is based on substitution of the space interval  

0,z L∈< >  by a set of discrete node points { }iz  for i = 1,  , 
n, and, subsequently, by approximation of derivatives with 
respect to the space variable in each node point by finite 
differences. Two types of finite differences are applied, either 
the backward finite difference  
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or the forward finite difference 
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Here, the function ( , )y z t  is continuously differentiable in 

0, L< > , and, h L n=  is the diskretization step. 

A. Dynamic model 
Applying the substitutions (5), (6) in (1) – (3) and, omitting 

the argument t in parenthesis, PDEs (1) – (3) are 
approximated by a set of ODEs in the form 
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for 1, ... ,i n= ,    1j n i= − + , and, with initial conditions  

( ,0) ( )s
r rT i T i= , ( ,0) ( )s

w wT i T i=  and ( ,0) ( )s
c cT i T i=  

for 1, ... ,i n= .  
Boundary conditions enter into Eqs. (7) – (9) for i = 1 . 
Here, the controlled output is computed as 

 
( ) ( , )r out rT t T n t= . (10) 

B. Steady-state model 
Computation of the steady-state characteristics is necessary 

not only for a steady-state analysis but the steady state values 
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also constitute initial conditions in ODEs (7) – (9). The 
steady-state model can simply be derived equating the time 
derivatives in (7) – (9) to zero. Then, after some algebraic 
manipulations, the steady-state model takes the form of 
difference equations 
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for 1, ... ,i n=  and 1j n i= − + .  
The controlled output is computed as 

 
( )s s

r out rT T n= . (14) 

C. Steady-state characteristics 
Some basic steady-state characteristics are shown in  

Figs. 2 – 6. 
The course of temperatures along the tubes of the heat 

exchanger for 0.1s
rq =  and 0.12s

cq =  is shown in Fig. 2. This 
shape is typical for considered type of the exchanger. 

The courses of the refrigerated fluid (RF) temperature along 
the tubes for various values s

cq   and s
rq   are in Figs. 3 and 4. 
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Fig. 2 Temperatures along the heat exchanger. 
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Fig. 3 RF temperature along the reactor for  various s

cq . 
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Fig. 4 RF temperature along the reactor for  various s

rq . 
 
Dependences of the output refrigerated fluid temperature 
s

r outT  on the cooling fluid (CF) flow rate and on the 

refrigerated fluid flow rate are shown in Fig. 5 and 6. A 
nonlinearity of both curves is evident. There are also shown  
values defining the operating point and interval later used for 
the process control. 
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Fig. 5. Dependence of the controlled output on the cooling  
           fluid flow rate ( 0.1s

rq = ). 
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Fig. 6. Dependence of the controlled output on the refrigerated 
fluid flow rate ( 0.1s

cq = ). 

D. Dynamic Characteristics 
Here, both inputs and the controlled output were  

considered as deviations from their steady values defined as 
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3 30.1 m / s, 0.1 m / ss s
c rq q= =  and 309.94 Ks

r outT = . This 

form is mostly used in the control. The deviations are denoted 
as follows: 

 

1( ) ( ) ( ) s
c c cu t q t q t qΔ= = −  (15)  

2 ( ) ( ) ( ) s
r r ru t q t q t qΔ= = −  (16) 

( ) ( ) s
r out r outy t T t T= −  (17) 

 
The controlled output y step responses to 1 2andu u  are 

shown in Figs. 7 and 8.  
 

0 20 40 60 80 100 120 140

-4

0

4

8

12

y 
(K

)

t (s)

1 - u1 = - 0.04  2 - u1 = - 0.02
3 - u1 =   0.02  4 - u1 =   0.04

1

2

3

4

 
Fig. 7. Controlled output step responses to u1. 
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Fig. 8. Controlled output step responses to u2. 

IV. CONTROL DESIGN 

A. CT external linear model 
Taking into account profiles of curves in Figs. 7 and 8, the 

second order CT ELM has been chosen for the input 1u  and 
the first order CT ELM for the input 2u . Then, both CT ELMs 
are described in the time domain by  differential equations 

 
1 0 0 1( ) ( ) ( ) ( )y t a y t a y t b u t+ + =  (18) 

0 0 2( ) ( ) ( )y t a y t b u t+ =  (19)  
 

or, in the transfer function representation as 
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B. Delta external linear model 
Establishing the δ operator 
 

0

1q
T

δ −
=  (22) 

 
where q is the forward shift operator and T0 is the sampling 
period, the delta ELMs corresponding to (18) and (19) take 
forms 
 

2
1 0 0 1( ) ( ) ( ) ( )y t a y t a y t b u tδ δ′ ′ ′ ′ ′ ′ ′+ + =  (23) 

0 0 2( ) ( ) ( )y t a y t b u tδ ′ ′ ′ ′ ′+ =  (24) 
 
where t′ is the discrete time. 

When the sampling period is shortened, the delta operator 
approaches the derivative operator, and, the estimated 
parameters ,a b′ ′  in  (23) and (24) reach the parameters a, b of 
the CT models (18) and (19) as proved e.g. in [13]. 

Substituting 2t k′ = −  in (23) and 1t k′ = −  in (24), both 
equations may be rewriten to forms 
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C. Delta model parameter estimation 
Establishing regression vectors 
 

( )1 1( 1) ( 2) ( 2) ( 2)T k y k y k u kδ δ− = − − −Φ  (28) 

( )2 2( 1) ( 1) ( 1)T k y k u kδ − = − −Φ  (29) 

 
then, vectors of delta models parameters 
 

( )1 1 0 0( )T k a a bδ ′ ′ ′=Θ  (30) 

( )2 0 0( )T k a bδ ′ ′=Θ  (31) 
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are recursively estimated from the ARX models 
 

2
1 1( 2) ( ) ( 1) ( )Ty k k k kδ δδ ε− = − +Θ Φ  (32) 

2 2( 1) ( ) ( 1) ( )Ty k k k kδ δδ ε− = − +Θ Φ  (33) 

 
The recursive parameter estimations were performed with 

the sampling interval T0 = 1 s. Here, the recursive 
identification method with exponential and directional 
forgetting was used according to [20] and [21]. 

D. Control System Description 
In this paper, the control system with two feedback 

controllers is considered according to Fig. 9. 
  

- -

v 

e w u u0 y 
 R G 

Q 

 
Fig. 9.  Control system with two feedback controllers. 

 
In the scheme, w is the reference signal, v  denotes the load 
disturbance, e is the tracking error, u0 is the output of the 
controller, y is the controlled output and  u is the control input. 

In general therms, G represents the ELM with the transfer 
function  

 
( )( )
( )

b sG s
a s

=  (34) 

 
and Q and R are feedback controllers with transfer functions 
 

( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
p s

=  (35) 

 
where , andq r p are polynomials in s. 

Both w and v  are considered  to be step functions with 
transforms 

 
0( )

w
W s

s
= , 0( )

v
V s

s
= . (36) 

 

E.  Application of  Polynomial Method 
The controller design described in this section appears from 

the polynomial approach. General conditions required to 
govern the control system properties are formulated as strong 
stability (in addition to the control system stability, also the 
stability of  controllers is required), internal properness, 

asymptotic tracking of the reference and load disturbance 
attenuation. 

The procedure to obtain admissible controllers can be 
briefly described as follows: 

Establish the polynomial t as 
 

( ) ( ) ( )t s r s q s= + . (37) 
 
Then, the control system stability is ensured when 
polynomials p  and t are given by a solution of the polynomial 
equation 
 

( ) ( ) ( ) ( ) ( )a s p s b s t s d s+ =  (38) 
 
with a stable polynomial d on the right side. Evidently, the 
roots of d determine poles of the closed-loop. 

Further, the asymptotic tracking and load disturbance 
attenuation are provided by polynomials p and q  having 
forms 

 
( ) ( )p s s p s= ,  ( ) ( )q s s q s= . (39) 

 
Subsequently, the transfer functions of controllers take forms 
 

( )( )
( )

q sQ s
p s

= ,  ( )( )
( )

r sR s
s p s

= . (40) 

 
A stable polynomial p(s) in denominators of (40) ensures the 
stability of controllers.  

The control system satisfies the condition of internal 
properness when the transfer functions of all its components 
are proper. Consequently, the degrees of polynomials q and r 
must fulfill inequalities 

 
deg degq p≤ ,  deg deg 1r p≤ + . (41) 
 
Now, the polynomial t can be rewritten into the form 

 
( ) ( ) ( )t s r s s q s= + . (42) 

 
Taking into account solvability of (38) and conditions (41), 

the degrees of polynomials in (38) and (41) can be easily 
derived as 

 
deg deg deg , deg deg 1
deg deg 1, deg 2deg

t r a q a
p a d a
= = = −
≥ − ≥

.  (43) 

. 
Denoting deg a = n, polynomials t, r and q have forms 
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where their coefficients fulfill equalities  
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0 0r t= ,  i i ir q t+ =  for 1, ... ,i n=  (45) 
 
Then, unknown coefficients ri and qi can be obtained by a 
choice of selectable coefficients 0,1iβ ∈  such that 
 

i i ir tβ= ,  (1 )i i iq tβ= −  for 1, ... ,i n= . (46) 
 
The coefficients βi distribute weights between numerators of 
transfer functions Q and R. With respect to (40) and (46), it 
may be expected that higher values of βi accelerate control 
responses to step references. 
 

Remark: If 1iβ =  for all i, the control system in Fig. 9 
simplifies to the 1DOF control configuration. If 0iβ =  for all 
i and both reference and load disturbance are step functions, 
the control system corresponds to the 2DOF control 
configuration. 

 
Now, for the second order model (20) with deg 2a = , the 

numerators in (40)  take forms 
 

2 1( )q s q s q= + ,  2
2 1 0( )r s r s r s r= + +  (47) 

 
and, for the first order model (21) with deg 1a =  
 

1( )q s q= ,  1 0( )r s r s r= +  (48) 
 
where 
 

1 1 1r tβ= ,  2 2 2r tβ= ,  1 1 1(1 )q tβ= − ,  2 2 2(1 )q tβ= − . (49) 
 

The controller parameters then follow from solution of the 
polynomial equation (38) and depend upon coefficients of the 
polynomial d.  

F. Pole Placement 
A suitable control quality can be achieved by a  

determination of the closed-loop poles given by roots of the 
polynomial d on the right side of (38). In this paper, the 
procedures are based on the LQ control theory.   

The polynomial d is chosen as a product of two stable 
factors  

 
( ) ( ) ( )d s g s n s=  (50) 
 

where the polynomial g is a monic form of the polynomial g ′  
obtained by spectral factorization 

 

[ ] [ ]( ) ( ) ( ) ( ) ( ) ( )s a s s a s b s b s g s g sϕ∗ ∗ ∗′ ′+ =  (51) 
 
where ϕ > 0 is the weighting coefficient. 

In the LQ optimal control theory, spectral factorization (51) 

results from the minimization of the quadratic cost function 
 

{ }2 2

0

( ) ( )J e t u t dtϕ
∞

= +∫  (52) 

 
where ( )e t  is the tracking error and ( )u t is the control input 
derivative. 

The polynomials g ′  and derived formulas for their 
parameters calculation have forms 

 
3 2

3 2 1 0( )g s g s g s g s g′ ′ ′ ′ ′= + + +  (53) 
 

for the second order system (20) where 
 

2
0 0 3 1 0 0 2

2
2 1 0 1 3

, , 2

( 2 ) 2

g b g g a g g

g a a g g

ϕ ϕ

ϕ

′ ′ ′ ′ ′= = = +

′ ′ ′= − +
 (54) 

 
and,  
 

2
2 1 0( )g s g s g s g′ ′ ′ ′= + +  (55) 

 
for the first order system (21) where 
 

0 0g b′ = ,  2g ϕ′ = ,  2 2
1 0 1 0 22g a b g gϕ′ ′ ′= + +  (56) 

 
For calculation of d given by (50), polynomials (53) and 

(55) are arranged to monic forms g(s) (with unit coefficients 
by the highest power of s) such that  

 
0,1,... ,j j ng g g j n′ ′= =  (57) 

 
where degn g ′= . 

The stable polynomial n in (50) is a result of spectral 
factorization 

 
( ) ( ) ( ) ( )n s n s a s a s∗ ∗=  (58) 

 
having forms 

  
2

1 0( )n s s n s n= + +  (59) 
 
for the second order system (20), and, 
 

0( )n s s n= +  (60) 
 
for the first order system (21) with coefficients 
 

2
0 0n a= ,  2

1 1 0 02 2n a n a= + − . (61) 
 

INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION

Issue 5, Volume 7, 2013 394



 

 

Polynomials d then have forms 
 

5 4 3 2
4 3 2 1 0( )d s s d s d s d s d s d= + + + + +  (62) 

 
for the second order system with coefficients 
 

4 2 1 3 2 1 1 0 2 2 0 1 1 0

1 1 0 0 1 0 0 0

, , ,
,

d g n d g n g n d g n g n g
d g n g n d g n

= + = + + = + +

= + =
 (63) 

 
and, 
 

3 2
2 1 0( )d s s d s d s d= + + +  (64) 

 
for the first order system with coefficients 
 

2 1 0 1 1 0 0 0 0 0, ,d g n d g n g d g n= + = + = . (65) 
 
The procedure leads to strictly proper controllers with 

transfer functions 
 

2 1
2

1 0
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+
=

+ +
,  

2
2 1 0

2
1 0

( )
( )
r s r s r

R s
s s p s p

+ +
=

+ +
 (66) 

 
for the second order system (20), and, 
 

1

0
( )

q
Q s

s p
=

+
,  1 0

0
( )

( )
r s r

R s
s s p

+
=

+
 (67) 

 
for the first order system (21). Their parameters are computed 
from equations 
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and, subsequently, using equations (46). 

Now, it follows from the above introduced procedure that 
the parameters of both controllers depend upon coefficients β 
as well as upon the parameter ϕ  which affects the closed-loop 
poles. Consequently, tuning of the controllers can be 
performed by a suitable choice of selectable parameters β and 
ϕ . 

V. SIMULATION RESULTS 
The simulations were performed around the operating point  

3 30.1m / s, 0.1m / ss s
c rq q= =  and 309.94 Ks

r outT = . For the 

start (adaptation phase), a P controller was used in all 
simulations. 

As the control inputs, either the CF flow or the RF flow 
were used. 

An effect of the parameter ϕ on the controlled outputs and 
the control input responses is presented in Figs. 10, 11 and 12. 
Evidently, a decreasing ϕ results in controlled outputs with 
higher overshoots. Moreover, a smaller ϕ  can lead to 
oscillations of the control input. Therefore, the selection of an 
appropriate value ϕ  is important especially in control of a real 
process. 

Overshoots (undershoots) can be reduced using a suitable 
selection of parameters β as shown in Figs. 13 and 14. 
However, it should be noted that very small β can result to a 
slow control. 

The control results by the CF and RF flow as the control 
inputs with the same parameters are compared in Fig. 15. Both 
curves show that the use of the RF flow provides a faster 
control. However, selecting the appropriate control input  
always depends on specific technological conditions. 

The controlled output in control by the RF flow in the 
presence of random disturbance v loaded on the CF flow is    
shown in Fig. 16. 
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Fig. 10. Effect of ϕ  on controlled output in control by CF  
             flow (β1 = β2 = 1). 
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Fig. 11. Effect of ϕ  on controlled output in control by RF  
             flow (β1 = β2 = 1). 
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Fig. 12. Effect of ϕ  on control input u1 in control by CF  
             flow (β1 = β2 = 1). 
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Fig. 13. Effect of β on controlled output in control by CF  

         flow (ϕ  = 2500). 
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Fig. 14. Effect of β on controlled output in control by RF  

         flow (ϕ  = 2500). 

VI. CONCLUSION 
The paper deals with design and verification of the adaptive 

control algorithm for a shell and tube heat exchanger.  
As the control inputs, either the cooling fluid flow or the 
refrigated fluid flow are used. The control system structure 
with two feedback controllers is considered. The control 
algorithm is based on an alternative continuous-time external 
linear model with parameters obtained via recursive parameter 
estimation  of a corresponding  delta model. The control law is  
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Fig. 15 Comparison of controlled outputs in control by CF 

         and RF flow (ϕ  = 2500, β1 = β2 = 1). 
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Fig. 16. Controlled output in control by RF flow in presence 

          of random disturbance (ϕ = 2500, β1 = β2 = 1). 
 

derived using the polynomial approach and optimal pole 
assignment resulting from the LQ control theory. Both 
feedback controllers are obtained by a solution of the 
polynomial  equation. Tuning of their parameters is possible 
by two selectable parameters  

The presented method has been tested by computer 
simulation on the nonlinear model of the shell and tube heat 
exchanger. 
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